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ABSTRACT 

Let q =6t  q- 1, v = 2q + 2.The (v/3) triples onv  marks may be partitioned 
into q sets, each forming a BIBD of parameters ( v,3, 2). Related results, some 
of them known, are also discussed briefly. 

1. Notation and terminology 

q is a natural integer with (q, 6)--- 1, that is, of the form 6t +_ 1. G is an additively 

written abelian group of order q, whose elements will be denoted by 0 and by 

lower case Latin letters, except x and v, with or without subscript. H = G ~ C(2); 

the generator of C(2) is denoted by 0, and for g e G, g + 0 will be written g. 

V is a set consisting of the elements of H plus two additional marks x and y. 

I V [ = v = 2q + 2. Terminology will follow rather closely that of Hall [2, mainly 

Sect. 15.3]. Thus, we shall attempt a mixed difference construction. Specifically, 

in Section 3 we shall select a set S(0) of triples on the elements of V, being a BIBD 

of parameters (v,3,2). This will form the first layer (corresponding to a block in 

the mixed difference procedure described in 12]). Then, for every q e G, we shall 

obtain in Section 4 a new layer S(g), by adding g to every element of H appearing 

in a triple of S(0). These q BIBDs will have no triple in common and exhaust, 

them, all ( ~ )  triples on V. Taking such a set of q BIBDs as a single among 

structure, with G acting as group of automorphisms, the designation of complete 

block design for it would appear justified. We shall then sketch, in Section 6, a 

similar partition of triples on a set into layers covering the pairs once (Steiner 

triples); next, of pairs into layers covering the singletons once (see (7.1), Matchings) 

or twice (see (7.2), Hamiltonian cycles), as was pointed out, in this context, by 
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Simmons [5]. Lastly, a somewhat illegal example of partitioning the (t + 1)- 

tuples of an infinite set into layers covering the t-tuples once. 

2. Some more terminology and preliminary construction 

Let z denote the automorphism of G mapping each 0 ~ G into -2g .  Then 

0z = 0 and since G can contain no element of order 3 (as (q, 3) = 1), gz # # for 

0 # 0. Thus �9 permutes the elements of G # (G#= G I {0}) in cycles. Call the 

ordered pair (0, gz), # ~ G~, an arc and ( - g ,  -0z )  the opposite arc. There are 

thus �89 - 1) pairs of opposite arcs. Such pairs of arcs may lie on the same cycle 

(which is then of even length) or not (and then, sequences of such arcs form pairs 

of opposite cycles). Both situations may occur within the same group, as illustrated 

by G = C(35), say. 

Step O. Of each pair of opposite arcs (on the same cycle or not) colour 

arbitrarily one red, one blue. (This may be done in 2 tq-l)/2 ways.) 

3. Construction of S(0) 

Step la. Take each triple of different elements (a, b, c), a, b, c ~ G, if a + b + c 

m-0. 

Step lb. For each triple thus formed, add 7 more, independently replacing 

a, b, c by d,/~, 6 respectively. 

Step lc. For each arc (a,b) (that is, b = -2a) ,  take the two triples (a,b, d) 
and (a, b, d). 

(So far, we have collected ] (q -1 )  (2q-1) triples, namely all the triples of 

different elements of H summing to 0 or 0; and, except for pairs of elements of H 

corresponding to pairs forming an arc in G, each pair of elements of H has been 

covered twice). 

Step 2a. If (a, b) is a red arc, add the 4 triples (x, a,b), (x, ~, b), (y, a, b) 

(y, a,, b). 

Step 2b. If (a,b) is a blue arc, add the 4 triples (y, a,b), (y, d, b), (x, a, b), 

Cx, a,b). 

Step 3. Add the 4 triples (x, y, 0), (x, y, 0), (x, 0, 0), (y, 0, 0). Thus, each pair of  

elements of V has been covered exactly twice: the pairs originating from arcs 
have been covered a second time in Step 2 and for g e G ~, each pair (x,0), (x, ~), 

(Y, 0), (Y, g) has also been covered twice, once for 0 being the first element of an 
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arc, once for its being the second. Step 3 completes this for g = 0 and for the pair 

(x,y), and we have indeed obtained a BIBD of type (0,3,2). 

4. Construction of S (g) 

For each g ~ G, S(g) will consist of  the following triples: 

4.1. For each (~,P,~) ~ S(0), g,p,7 e l l ,  (g + g, p +  g, 7 + g)~S(g). 

4.2. For each (x, ~, ~) or (y, ~,/~) in S(0), (x, g + g ,  p + g) respectively (y, ct +g ,  

+ g) will be in S(g). 

4.3.  (x,y,g),  (x,y,~),  (x,g,~),  (y,g,~)~S(g). 

(It would be more in keeping with the notation in Hall [2] to write ool and oo2 

for x and y). 

This process of  translation maps distinct elements, pairs, and triples of H again 

into distinct elements, pairs, and triples of  H. Thus, since S(0), obtained in 

Section 3, is a BIBD of type (v, 3, 2), every S(g) will be a design of  the same type 

The total number of  triples listed is q. 

3 2 3 ' 

It remains therefore only to verify whether the sets S(g) form in fact a partition 

of all the triples on V, that is, whether they are disjoint. 

5. Check for common triples 

Since S(g2) may be derived from S(gl) by the same operation of translation a 

S(gz - gt) from S(0), it will be sufficient to examine S(0) and S(g) with g ~ 0 for 

common triples. 

5.1. For g ~ O, S(g) contains none of  the triples constructed in Step 1; for 

these sum to 0 or 0, while those of  S(g) sum to 3g or 3g which cannot be 0 or (5 

since I G[ = q, (q, 3) = 1. 

5.2. Suppose now (a,b) is a red arc (Section 2) and (x, a, b )e  S(0) II S(#); put  

a - g = c, b - g = d; then by (4.2), (x, c, d) e S(0). Now (c, d) cannot be an arc 

if (a, b) is one, since 2c + d = 2a + b - 3 g = - 3g ~ 0, by the argument above 

(5.1). Then (d, c) is an arc, that is, 2d + c = 2b + a - 3g = 0 and, since b = - 2 a ,  

this gives - 3 a  - 3g = 0 or g = - a;  therefore c = 2a, d = - a so that (d, c) 

= ( -  a, 2a) is the opposite arc to (a, - 2a) = (a, b). Now, by Step 0, (d, c) will be 

a blue arc; therefore, by Step 2b, S(0) will contain (y, d,c) and following this, by 
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(4.2), S(0) will contain (v, a, b) and not (x, a, b). By a similar argument (or rather, 

by 7 similar arguments) we may verify that none of the triples assigned to S(0) 

by Step 2 are repeated elsewhere. 

(Another formulation of what we have just proved would be as follows: Let e 

and f be two fixed elements of G. The unordered pair (e,f),  under translation by 

the variable element g ~ G, describes an orbit of unordered pairs (e + g, f + g). 

This orbit will contain exactly two pairs that, when ordered, form arcs, say 

(e + gl, f + gl) and ( f  + g2, e + 02); moreover f + 02 = - (e + gl), that is, 

in each orbit we find one pair of opposite arcs). 

5.3. The case of the triples of Step 3 and, correspondingly (4.3), is trivial to 

verify. 

Hence S(0) is disjoint from S(g) for 0 ~ 0 and consequently any two different 

S(g)s are disjoint. To sum up: 

PItOPOSlTION 1. l f v = 1 2 t  or 12 t+4,  t h e ( ; )  t r i p l e s o n v m a r k s m a y b e  

partitioned into ( v - 2 ) / 2  sets, each formin9 a BIBD of parameters 

(v, v (v-  1)/3, v - 1, 3, 2). 

RPM~K. BIBDs of the form (v,3,2) also exist for v = 12t + 6 and 

v = 12t + 10, and presumably an algorithm, similar to the one above, could 

be found to assemble q = (v -2 ) /2  such designs into a complete design on the 

( ~ )  triples but the automorphism would then be of even order, = 6 t + 2 group q 
/ 

or 6t + 4 and some steps in the construction of S(0) would have to be suitably 

changed. I have found some solutions for particular values of v, but a general 

construction would be desirable.* 

In the next two sections, some more balanced complete block designs will be 

discussed, to emphasize the fact that the construction of Sections 3--4 is not an 

isolated instance. 

6. Steiner triple systems 

The following (arithmetical, rather than group-theoretical) property of groups 

has been proved in [3]. 

PROPOSITION 2. Let G be a 9roup of order q. Then the mapping g ~ - 20 

permutes the elements of G ~ in cycles, each of length twice some odd number 

*For a recent class of examples of wide application in coding theory, see Ref. 6. 



Vol. 18, 1974 BLOCK DESIGNS 35 

iff q divides some integer of the form 2 c -  1, c odd; moreover, if this condition 

holds, g E G ~ and - g  will always be on the same cycle. 

Example are q = 7, 23, 31, 47, 49. 

To the elements of an abelian group of such order, let us adjoin two more 

marks, x and y, as in Section 1 above, to form a set Y, I 1/I = v = q + 2. Modify 

Step 0 of Section 2 to read: 

Step 0'. In every cycle, colour adjacent arcs alternately red and blue. The 

cycles being of even length, this colouring will be self-consistent, and each element 

of G # will be on one arc of each colour; opposite arcs (half a cycle length, thus an 

odd number of steps, apart) will then automatically have different colours. If we 

now repeat the construction of S(0) as in Section 3, ignoring triples with elements 

of H -  G, each pair is covered once and a Steiner triple system results. 

The translation of S(0) to S(g), as in Section 4, goes through unchanged, and 

the verification of disjointness, especially (5.2) above, remains valid since it rests 

on the fact that the only arc obtained from another by translation is the opposite 

one. We have thus the following proposition. 

PROPOSITION 3. I f  q divides some integer of the form 2 ~ -  1, c odd, the 

( ; )  triples on v = q + 2 m a r k s  may be partitioned into qse ts  (or layers), 

each forming a Steiner triple system. 

For other values of q, no such construction is known to the author*. A more 

detailed account appears in [4]. 

7. Simmons' nniform covers, and more example,c 

In [5!, G. J. Simmons considers a question that may be termed dual to that of 

the existence of combinatorial t-designs. Let n ~ q > r > 1 ; if a given q-set on n 

marks contains a given r-set, the r-set is said to cover the q-set. Each r-set thus 

covers q-sets; how many are required to cover all q-sets uniformly (an 

equal number, say 2, of times)? If less than ( n ) ,  the solution is termed non- 
\ r / 

trivial. As a by-product to his interesting results on this question, Simmons 

describes various classes of examples in which the r-sets may be partitioned into 

* This has been recent progress on this question. See recent and forthcoming papers by 
R.H.F. Denniston, Alexander Rosa, L. Teirlinek and R.H. Wilson. 
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families of equal order, each forming a ;t-cover of the q-sets. He stresses the 

equivalence between this description of the situation and the following one: 

replace each r-set by its complementary (n-r)-set  and each q-set by its comp- 

lementary (n-q)-set. Then the (n-r)-sets may be partitioned into layers, each 

layer covering (in the old, or t-design sense) 2 times the (n-q)-sets. 

Let us quote two typical instances. 

7.1. MATCHINGS. Let m = 2k + 1 and denote the elements of C(m) (the 

cyclical group of order m) by 0, ___ 1, _ 2, ... _ k. Adjoin an outside element x, 

and form a first layer S(0) of the pairs (x,0), (1, -1) ,  (2, -2) ,  ..., ( k , -  k). For 

1 < j  <k ,  form 2k more layers S(+__ j) by adding + j or - j ,  modulo m, to each 

element of a pair, except x. Each pair appears exactly once, and each singleton 
is covered once in each layer. In graph theoretical language, we have coloured the 

edges of the complete graph on 2k + 2 vertices by 2k + 1 colours, the edges of 

each colour forming a one-factor or a matching of the graph. (So do the arcs of 

either colour, of the complete graph of the elements of G ~, by step 0' of Section 6) 

(see [-5, Th. 9; a classical result]). 

7.2. HAMILTONIAN CYCLES. Denote the elements of C(m), m = 2k, by 

0, ___ 1, + 2, ... + (k-1) ,  k. Adjoin an outside element x, as above, and form a 

first layer S(0) of element pairs 

(x,0), (0,1), (1 , -1) ,  ( - 1 , 2 ) . . . ( k - l , l - k ) ,  (1-k ,k) ,  (k,x); 

in other words, form the Hamiltonian cycle (x,0, 1, - 1 ,  .-.k - 1, 1 -  k,k, x) 
Next, for 1 = j =< k - 1, form k - 1 more layers S(j), by adding j e C(m) to 

every element, except x. Each layer contains every singleton twice, and between. 

them, all pairs are covered exactly once. We have thus decomposed the complete 

graph on 2k + 1 vertices into k edge-disjoint Hamiltonian cycles. (Simmons' 

construction [5, Th. 10] is more elegant, but more elaborate. The one here 

dates back to Kirkmann, refer to [1, Chap XIX, Example I], and would seem to 

indicate that the mixed difference procedure's applicability goes a bit farther than 

automorphisms of designs.) Note also some analogy between this example on the 

one hand, and the graph formed by the pairs associated with x, (or with y), in 

Steps 2a - 2 b  of Section 3, and further in (4.2) on the other hand. 

7.3. INFINITE t-DESIGNS. This last example is hardly legitimate, as it concerns 

an infinite set. However the similarity between it and the one in Section 6 on 

Steiner triples is readily apparent, and its structure, if anything, is simpler. 
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The set V consists, in this case, of the elements of an ordered abelian group G 

in which division by every integer < t + 1 is possible (for instance Q+, the additive 

group of the rationals; but one may restrict denominators to power products of 

the primes __< t + 1), and of t additional elements, x 1 to xt. 

S(0) contains, in the first place, all that (t + 1)-tuples of elements of G, such 
that: 

( i)  g l  < g2 < g3 < "'" < g,  < g t + l ,  

(ii) g l + g z + ' " + g l + t  = 0 .  

Condition (i) requires that, if the elements of the block are arranged in non- 

decreasing order, every difference gi+ ~ - g~, 1 _<_ i < t, be positive. Next, if a set 

of elements of G satisfies (ii), but one or more difference g~+l - gi is zero, we 

replace gi+l by xi and include this modified (t + 1)-tuple in S(0) as well. Thus, 

for instance, S(0) contains the block (0, xl,x2, "",x t). It is readily verified that 

S(0) covers every t-tuple on V exactly once. Now, for every g s G, we form S(g) 

by adding g to every element of G in each block of S(0). In this way, every (t - 1)- 

tuple of V will appear exactly once. The verification is left to the reader. 

I do not know of a finite example analogous to this for t > 2. t = 1 is (7.1) and 

for t = 2 we have the construction of Section 6. It would be very desirable to have 

finite examples for more values of t. 
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